The 75 Uniform Compounds of Uniform Polyhedra



In 1976 John Skilling published "Uniform Compounds of Uniform Polyhedra [Ref]. Many, if not all, of these models may have appeared in Michael G. Harman, "Polyhedral Compounds" [Ref], an unpublished manuscript around 1974. However, the concept of Uniform Compounds with Rotational Freedom was first published in Skilling's paper. Historically, at least some of the Uniform Compounds were known. Peter Cromwell notes in his book Polyhedra [Ref] that the compound of two tetrahedra was first depicted in Pacioli's Divina Proportione [Ref] and the compounds of five and ten tetrahedra, of five cubes, and of five octahedra were first described by Edmund Hess [Ref] in 1876.

In 1996, George Hart generated many, but not all of them, as vrml models for the first time. In 2006 Piotr Pawlikowski noticed that there was still no one place where all of the 75 models could be found. With the help of Marcel Tunnissen and others, he completed the missing models for a collection of 75 Stella files. From those, the vrml models could be generated, completing the series. Those models served as the inspiration for this web page.

A Uniform Compound was described by Skilling as "a three-dimensional combination of uniform polyhedra whose edge-lengths are all equal and whose relative position is such that the symmetry group of the combination is transitive on the set of all vertices of the polyhedra. The polyhedra may intersect themselves and each other, but compounds in which some faces are either shared between constituents or totally hidden from exterior view are excluded".

Sometimes erroneously referred to as "vertex uniform", the property of the vertices of the Uniform Compounds is that they are isogonal (literally "same-vertexed"). To be one of the Uniform Compounds, the vertices must be situated in a "kaleidoscopic" pattern such that if a section of it were displayed in 3 mirrors as in a sort of 3D kaleidoscope, and it was carefully rotated it would continue to look like the whole compound. The vertices of a Uniform Compound will also all be identical such that they all have the same valence. But just having vertex congruence within a given geometry is not enough. For instance, 20 cubes can be situated in an icosahedral pattern, but the vertices on their corners are not isogonal. While not instantly apparent, if the kaleidoscope test were done on the vertices, it could be seen as not quite right.

Isogonality and isohedrality are dual properties. Taking the dual of any of the Uniform Compounds, all which have one kind of vertex, will result in a compound with only one kind of face. For instance the dual of the Compound of 4 Hexagonal Prisms will be a compound of 4 Hexagonal Dipyramids and all faces will be triangles of the same shape and size (isohedral). Most of the time even when the dual has faces of regular polygons it is not a Uniform Compound. For instance, while the compound of 20 octahedra is isogonal, its dual is of all the square faces of 20 cubes but again it is not a Uniform Compound because it has two types of vertices. In fact, other than the self-dual tetrahedral compounds, there is only one case such that the dual of a Uniform Compound is also a Uniform Compound. In the case of the Compound of 5 Cubes, its dual, the Compound of 5 Octahedra is also a Uniform Compound.

Some interesting facts about the Uniform Compounds.


Links to other pages for further reading:


Question or comments about the web page should be directed to PolyhedraSmith@gmail.com

The compounds are presented in the order Skilling originally listed them. The Super Heading of each table is the group name from Skilling's paper for which those compounds belong. Each figure lists the symmetry (S) T - Tetrahedral, O - Octahedral, I - Icosahedral, number of faces of each type - Triangle, Square, Pentagon, Hexagon, Octagon and Decagon. Total Face, Edge and Vertex counts are given such that each compound constituent is a separate entity. A (C) denotes that solid is chiral. An (R) denotes rotational freedom. For Compounds with Rotation Freedom, animations of different aspects of the model are provided.

Links below display various models



Miscellaneous 1-5
01 - 6 Tetrahedra (R)
S3456810
T24*****
F=24       E=36       V=24
D2v   D2v   D2v   C3v
02 - 12 Tetrahedra (R)
S3456810
O48*****
F=48       E=72       V=48
D4h   D4h   D4h   D3v
03 - 6 Tetrahedra
S3456810
O24*****
F=24       E=36       V=24
off  stel     wrl  switch cyl
04 - 2 Tetrahedra
S3456810
I8*****
F=8       E=12       V=8
off  stel     wrl  switch cyl
05 - 5 Tetrahedra (C)
S3456810
I20*****
F=20       E=30       V=20
off  stel     wrl  switch cyl
Miscellaneous 6-10
06 - 10 Tetrahedra
S3456810
I40*****
F=40       E=60       V=40
off  stel     wrl  switch cyl
07 - 6 Cubes (R)
S3456810
O*36****
F=36       E=72       V=48
D4h   D4h   D4h   D3v
08 - 3 Cubes
S3456810
O*18****
F=18       E=36       V=24
off  stel     wrl  switch cyl
09 - 5 Cubes
S3456810
I*30****
F=30       E=60       V=40
off  stel     wrl  switch cyl
10 - 4 Octahedra (R)
S3456810
T32*****
F=32       E=48       V=24
D2h   D2h   D2h   S6
Miscellaneous 11-15
11 - 8 Octahedra (R)
S3456810
O64*****
F=64       E=96       V=48
D4h   D4h   D4h   D3v
12 - 4 Octahedra
S3456810
O32*****
F=32       E=48       V=24
off  stel     wrl  switch cyl
13 - 20 Octahedra (R)
S3456810
I160*****
F=160       E=240       V=120
D2h   D3v   D5v
14 - 20 Octahedra
S3456810
I160*****
F=160       E=240       V=120
off  stel     wrl  switch cyl
15 - 10 Octahedra
S3456810
I80*****
F=80       E=120       V=60
off  stel     wrl  switch cyl
Miscellaneous 16-19
16 - 10 Octahedra
S3456810
I80*****
F=80       E=120       V=60
off  stel     wrl  switch cyl
17 - 5 Octahedra
S3456810
I40*****
F=40       E=60       V=30
off  stel     wrl  switch cyl
18 - 5 Tetrahemihexahedron (C)
S3456810
I2015****
F=35       E=60       V=35
off  stel     wrl  switch cyl
19 - 20 Tetrahemihexahedron (C)
S3456810
I8060****
F=140       E=240       V=140
off  stel     wrl  switch cyl
Prism Symmetry, Embedded in Prism Symmetry 20-24 (Examples)
20 - 2k n-d-gonal prisms
(12 Triangular Prisms) (R)
D2h   D2h   D18h
21 - k n-d-gonal prisms
(6 Triangular Prisms)
off   stel   wrl
22 - 2k n-odd-d-gonal antiprisms
(8 Digonal Antiprisms) (R)
D2h   D2h   D8h
23 - k n-odd-d-gonal antiprisms
(4 Digonal Antiprisms)
off   stel   wrl
24 - 2k n-even-d-gonal antiprisms
(12 Pentagrammic Antiprisms) (R)
D2h   D2h   D30h
Prism Symmetry, Embedded in Prism Symmetry 25 (Examples)
25 - k n-even-d-gonal antiprisms
(6 Pentagrammic Antiprisms)
off   stel   wrl
Prism Symmetry, Embedded in Octahedral or Icosahedral Symmetry 26-30

26 - 12 Pentagonal Antiprisms (R)
S3456810
I120*24***
F=144       E=240       V=120
D2h   D3v   D5v

27 - 6 Pentagonal Antiprisms
S3456810
I60*12***
F=72       E=120       V=60
off  stel     wrl  switch cyl
28 - 12 Pentagrammic
Crossed Antiprisms (R)
S3456810
I120*24***
F=144       E=240       V=120
D2h   D3v   D5v
29 - 6 Pentagrammic
Crossed Antiprisms
S3456810
I60*12***
F=72       E=120       V=60
off  stel     wrl  switch cyl

30 - 4 Triangular Prisms
(C)
S3456810
O812****
F=20       E=36       V=24
off  stel     wrl  switch cyl
Prism Symmetry, Embedded in Octahedral or Icosahedral Symmetry 31-35
31 - 8 Triangular Prisms
S3456810
O1624****
F=40       E=72       V=48
off  stel     wrl  switch cyl
32 - 10 Triangular Prisms (C)
S3456810
I2030****
F=50       E=90       V=60
off  stel     wrl  switch cyl
33 - 20 Triangular Prisms
S3456810
I4060****
F=100       E=180       V=120
off  stel     wrl  switch cyl
34 - 6 Pentagonal Prisms (C)
S3456810
I*3012***
F=42       E=90       V=60
off  stel     wrl  switch cyl
35 - 12 Pentagonal Prisms
S3456810
I*6024***
F=84       E=180       V=120
off  stel     wrl  switch cyl
Prism Symmetry, Embedded in Octahedral or Icosahedral Symmetry 36-40
36 - 6 Pentagrammic Prisms (C)
S3456810
I*3012***
F=42       E=90       V=60
off  stel     wrl  switch cyl
37 - 12 Pentagrammic Prisms
S3456810
I*6024***
F=84       E=180       V=120
off  stel     wrl  switch cyl
38 - 4 Hexagonal Prisms
S3456810
O*24*8**
F=32       E=72       V=48
off  stel     wrl  switch cyl
39 - 10 Hexagonal Prisms
S3456810
I*60*20**
F=80       E=180       V=120
off  stel     wrl  switch cyl
40 - 6 Decagonal Prisms
S3456810
I*60***12
F=72       E=180       V=120
off  stel     wrl  switch cyl
Prism Symmetry, Embedded in Octahedral or Icosahedral Symmetry 41-45
41 - 6 Decagrammic Prisms
S3456810
I*60***12
F=72       E=180       V=120
off  stel     wrl  switch cyl
42 - 3 Square Antiprisms (C)
S3456810
O246****
F=30       E=48       V=24
off  stel     wrl  switch cyl
43 - 6 Square Antiprisms
S3456810
O4812****
F=60       E=96       V=48
off  stel     wrl  switch cyl
44 - 6 Pentagrammic Antiprisms (C)
S3456810
I60*12***
F=72       E=120       V=60
off  stel     wrl  switch cyl
45 - 12 Pentagrammic Antiprisms
S3456810
I120*24***
F=144       E=240       V=120
off  stel     wrl  switch cyl
Tetrahedral Symmetry, Embedded in Octahedral or Icosahedral Symmetry 46-50
46 - 2 Icosahedra
S3456810
O40*****
F=40       E=60       V=24
off  stel     wrl  switch cyl
47 - 5 Icosahedra
S3456810
I100*****
F=100       E=150       V=60
off  stel     wrl  switch cyl
48 - 2 Great Dodecahedra
S3456810
O**24***
F=24       E=24       V=60
off  stel     wrl  switch cyl
49 - 5 Great Dodecahedra
S3456810
I**60***
F=60       E=60       V=150
off  stel     wrl  switch cyl
50 - 2 Small Stellated Dodecahedra
S3456810
O**24***
F=24       E=24       V=60
off  stel     wrl  switch cyl
Tetrahedral Symmetry, Embedded in Octahedral or Icosahedral Symmetry 51-55
51 - 5 Small Stellated Dodecahedra
S3456810
I**60***
F=60       E=60       V=150
off  stel     wrl  switch cyl
52 - 2 Great Icosahedra
S3456810
O40*****
F=40       E=60       V=24
off  stel     wrl  switch cyl
53 - 5 Great Icosahedra
S3456810
I100*****
F=100       E=150       V=60
off  stel     wrl  switch cyl
54 - 2 Truncated Tetrahedra
S3456810
O8**8**
F=16       E=36       V=24
off  stel     wrl  switch cyl
55 - 5 Truncated Tetrahedra (C)
S3456810
I20**20**
F=40       E=90       V=60
off  stel     wrl  switch cyl
Tetrahedral Symmetry, Embedded in Octahedral or Icosahedral Symmetry 56-60
56 - 10 Truncated Tetrahedra
S3456810
I40**40**
F=80       E=180       V=120
off  stel     wrl  switch cyl
57 - 5 Truncated Cubes
S3456810
I40***30*
F=70       E=180       V=120
off  stel     wrl  switch cyl
58 - 5 Quasitruncated Hexahedra
S3456810
I40***30*
F=70       E=180       V=120
off  stel     wrl  switch cyl
59 - 5 Cuboctahedra
S3456810
I4030****
F=70       E=120       V=60
off  stel     wrl  switch cyl
60 - 5 Cubohemioctahedra
S3456810
I*30*20**
F=50       E=120       V=80
off  stel     wrl  switch cyl
Tetrahedral Symmetry, Embedded in Octahedral or Icosahedral Symmetry 61-65
61 - 5 Octahemioctahedra
S3456810
I40**20**
F=60       E=60       V=120
off  stel     wrl  switch cyl
62 - 5 Rhombicuboctahedra
S3456810
I4090****
F=130       E=240       V=120
off  stel     wrl  switch cyl
63 - 5 Small Rhombihexahedra
S3456810
I*60**30*
F=90       E=120       V=240
off  stel     wrl  switch cyl
64 - 5 Small Cubicuboctahedra
S3456810
I4030**30*
F=100       E=120       V=240
off  stel     wrl  switch cyl
65 - 5 Great Cubicuboctahedra
S3456810
I4030**30*
F=100       E=120       V=240
off  stel     wrl  switch cyl
Tetrahedral Symmetry, Embedded in Octahedral or Icosahedral Symmetry 66-67
66 - 5 Great Rhombihexahedra
S3456810
I*60**30*
F=90       E=120       V=240
off  stel     wrl  switch cyl
67 - 5 Great Rhombicuboctahedra
S3456810
I4090****
F=130       E=120       V=240
off  stel     wrl  switch cyl
Duplication of Enantiomorphs 68-72

68 - 2 Snub Cubes
S3456810
O6412****
F=76       E=120       V=48
off  stel     wrl  switch cyl

69 - 2 Snub Dodecahedra
S3456810
I160*24***
F=184       E=300       V=120
off  stel     wrl  switch cyl
70 - 2 Great Snub
Icosidodecahedra
S3456810
I160*24***
F=184       E=300       V=120
off  stel     wrl  switch cyl
71 - 2 Great Inverted Snub
Icosidodecahedra
S3456810
I160*24***
F=184       E=300       V=120
off  stel     wrl  switch cyl
72 - 2 Great Retrosnub
Icosidodecahedra
S3456810
I160*24***
F=184       E=300       V=120
off  stel     wrl  switch cyl
Duplication of Enantiomorphs 73-75

73 - 2 Snub Dodecadodecahedra
S3456810
I120*48***
F=168       E=120       V=300
off  stel     wrl  switch cyl
74 - 2 Inverted Snub
Dodecadodecahedra
S3456810
I120*48***
F=168       E=120       V=300
off  stel     wrl  switch cyl
75 - 2 Snub
Icosidodecadodecahedra
S3456810
I160*48***
F=208       E=144       V=360
off  stel     wrl  switch cyl

Question or comments about the web page should be directed to PolyhedraSmith@gmail.com.

Thanks to Guy Inchbald for a description of isogonality of Uniform Compound vertices

Generation of VRML models, OFF files, and Pictures was done with Antiprism. Stel were generated with Robert Webb's Stella application. The Hedron application by Jim McNeill was used to generate switch files.

I'd also like to thank Alex Doskey for his spreadsheet method which made the construction of this page much easier. I also use JovoToys in polyhedra contruction.

History:

2024-06-17 Use base.css
2024-06-13 Switch to Multi OFF Viewer
2023-09-03 Switch to Simple OFF Viewer and X_Ite VRML Viewer
2023-06-26 Change mention from Contona to FreeWRL 2019-03-16 Click on pictures goes to live model
2019-03-15 Marcel Tünnissen's gidrissid added
2019-03-12 Changed email address from defunct bigfoot.com
2012-02-22 Rebuilt page
2009-01-30 Update site for Piotr Pawlikowski picture gallery
2008-01-16 Edited part count for 5 Querco
2008-01-07 Added Piotr Pawlikowski picture gallery. Added Wikipedia link. Listed isogonal cases. Clarified isogonality paragraph
2008-01-06 Updated the beer statistics. Added Pictures of gidrissid paper models. Better explanation of "isogonality"
2008-01-05 Added OFF files. Took spaces out of file names
2006-12-21 Cylinder Files added. Big Pictures added
2006-12-16 Jonathan Bowers's site added. #62 Stel file corrected
2006-12-15 70 and 74 untangled
2006-12-13 #67 Face count corrected
2006-12-10 Initial Release
2006-12-03 Beta
2006-12-01 Alpha



Back to the main Polyhedron Page.
Link to this page as http://www.interocitors.com/polyhedra/UCs

Roger's Polyhedra, (c) 2006-2024, Roger Kaufman